Linear stability analysis of overdamped planar
Cosserat rod dynamics
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1 Linear stability analysis

The equations of motion are
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After taking a Fourier transform in the spatial coordinate (and dropping &) we
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These equations of motion are a result of a Cosserat rod with ordinary hy-
perelastic potential energy (the one described in the PRE right now), with an
additional moment-per-unit-material-length
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The intutition behind the parameters are as follow:

e a = M\ le: e is the elastic spring constant of the constitutive moment (so
the er2 term in the potential), ) is the magnitude of the rotational friction
relative to the translation friction.

e g: The elastic spring constant of the constitutive force (the gf3 term in
the potential).

e b= \"1(r—g): ris the strength of the moment-per-unit-material-length
due to 6. So if b is positive, then the active moment is larger than the
restoring moment from to the constitutive dynamics.



e ¢ = M\ !s: s is the strength of the moment-per-unit-material-length due
to 7.

Let the eigenvalues of A be u; and us. We will explore the behaviour of these

as a function of the parameters.
We have
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1.1 ¢=0

We will first consider the situation where ¢ = 0, in other words

m=1r60 xe;

1.2 a=g9,b>0,c=0

Let a = g. As we can rescale all parameters without changing the qualitative
behaviour of the system, we can set a = g = 1. For any positive value of b, we
find qualitatively an eigenstructure of the form:

a=lg=L1Lb=1c=0
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The solid lines are the real components of the eigenvalues, and the dashed
lines the imaginary ones. We see that there is a banded region of modes (starting
from k = 0 and ending at around k& = 0.7) that are unstable. Furthermore, a
subset of the growing modes (from around & = 0.5) are also oscillatory. At high
wavenumbers the imaginary components increase in magnitude indefinitely.

1.3 a#g9g,b>0,c=0

We now let a # g, meaning that the constitutive forces and moments do not
have the same “magnitude”, and keep b > 0.

a=1g=3.b=2,c=0
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This is essentially the same qualitative behaviour as in the previous case.
With the exception that at around k = 2, the oscillations stop and the eigenval-
ues become real. So when a # g we see that the oscillations are banded as well.
Physically, a # g would probably be the more physically realistic scenario.

Interestingly, the qualitative picture does not change at all depending on
whether a > g or g < a.



a=3,g=1Lb=2,c=0
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1.4 b=0,c#0

If we now let b < 0, meaning that the active moment is smaller than the con-
stitutive moment, then we have:



a=lg=1b=-1c=0
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No instabilities, and no oscillatory modes. This makes sense physically, as
in this scenario the constitutive moments dominate the active ones. In other
words, the linear instability only kicks in at a finite amplitude of the
active parameter.

1.5 b=0,c#0

We now consider

For a > g and ¢ > 0 we have



a=2g=1b=0,c=2
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For ¢ < 0 we have
a=2,g=1b=0,c=-2
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The qualitative picture does not change much for various choices of a and g.
We see that Eq. 3 does not lead to any linear instabilities.



1.6 b#0,c#0
Now let
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Consider a # g and b > c¢. We have
a=1g=15b=5c=1
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We see that we get long wave-length instabilities that dampen out at around
k =1.7. The —s7 term ensure that oscillations persist for high wave-numbers.
If b < ¢ we have
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