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1 Linear stability analysis
The equations of motion are

∂tδθ2 = −a∂uδπ3 + g∂2uδθ2 + bδθ2 + cδπ3 (1)

∂tδπ3 = a∂2uδπ3 − b∂uδθ2 − c∂uδπ3

After taking a Fourier transform in the spatial coordinate (and dropping δ) we
get

∂t

(
θ2(k)
π3(k)

)
= A

(
θ2(k)
π3(k)

)
where

A =

(
b− gk2 −iak + c
−ibk −ak2 − ick

)
These equations of motion are a result of a Cosserat rod with ordinary hy-
perelastic potential energy (the one described in the PRE right now), with an
additional moment-per-unit-material-length

m = rθ × e1 − sπ

The intutition behind the parameters are as follow:

• a = λ−1ε: ε is the elastic spring constant of the constitutive moment (so
the επ2

3 term in the potential), λ is the magnitude of the rotational friction
relative to the translation friction.

• g: The elastic spring constant of the constitutive force (the gθ22 term in
the potential).

• b = λ−1(r − g): r is the strength of the moment-per-unit-material-length
due to θ. So if b is positive, then the active moment is larger than the
restoring moment from to the constitutive dynamics.
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• c = λ−1s: s is the strength of the moment-per-unit-material-length due
to π.

Let the eigenvalues of A be u1 and u2. We will explore the behaviour of these
as a function of the parameters.

We have

u1 =− ak2

2
+
b

2
− ick

2
− gk2

2
−
√
a2k4 − 2abk2 + 2iack3 − 2agk4 + b2 − 2ibck − 2bgk2 − c2k2 − 2icgk3 + g2k4

2

u2 =− ak2

2
+
b

2
− ick

2
− gk2

2
+

√
a2k4 − 2abk2 + 2iack3 − 2agk4 + b2 − 2ibck − 2bgk2 − c2k2 − 2icgk3 + g2k4

2
(2)

1.1 c = 0

We will first consider the situation where c = 0, in other words

m = rθ × e1

1.2 a = g, b > 0, c = 0

Let a = g. As we can rescale all parameters without changing the qualitative
behaviour of the system, we can set a = g = 1. For any positive value of b, we
find qualitatively an eigenstructure of the form:
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The solid lines are the real components of the eigenvalues, and the dashed
lines the imaginary ones. We see that there is a banded region of modes (starting
from k = 0 and ending at around k = 0.7) that are unstable. Furthermore, a
subset of the growing modes (from around k = 0.5) are also oscillatory. At high
wavenumbers the imaginary components increase in magnitude indefinitely.

1.3 a 6= g, b > 0, c = 0

We now let a 6= g, meaning that the constitutive forces and moments do not
have the same “magnitude”, and keep b > 0.

This is essentially the same qualitative behaviour as in the previous case.
With the exception that at around k = 2, the oscillations stop and the eigenval-
ues become real. So when a 6= g we see that the oscillations are banded as well.
Physically, a 6= g would probably be the more physically realistic scenario.

Interestingly, the qualitative picture does not change at all depending on
whether a > g or g < a.
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1.4 b = 0, c 6= 0

If we now let b < 0, meaning that the active moment is smaller than the con-
stitutive moment, then we have:
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No instabilities, and no oscillatory modes. This makes sense physically, as
in this scenario the constitutive moments dominate the active ones. In other
words, the linear instability only kicks in at a finite amplitude of the
active parameter.

1.5 b = 0, c 6= 0

We now consider

m = −sπ (3)

For a > g and c > 0 we have
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For c < 0 we have

The qualitative picture does not change much for various choices of a and g.
We see that Eq. 3 does not lead to any linear instabilities.
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1.6 b 6= 0, c 6= 0

Now let

m = rθ × e1 − sπ

Consider a 6= g and b > c. We have

We see that we get long wave-length instabilities that dampen out at around
k = 1.7. The −sπ term ensure that oscillations persist for high wave-numbers.

If b < c we have
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